skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Guangfu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Two critical limitations of organic–inorganic lead halide perovskite materials for solar cells are their poor stability in humid environments and inclusion of toxic lead. In this study, high‐throughput density functional theory (DFT) methods are used to computationally model and screen 1845 halide perovskites in search of new materials without these limitations that are promising for solar cell applications. This study focuses on finding materials that are comprised of nontoxic elements, stable in a humid operating environment, and have an optimal bandgap for one of single junction, tandem Si‐perovskite, or quantum dot–based solar cells. Single junction materials are also screened on predicted single junction photovoltaic (PV) efficiencies exceeding 22.7%, which is the current highest reported PV efficiency for halide perovskites. Generally, these methods qualitatively reproduce the properties of known promising nontoxic halide perovskites that are either experimentally evaluated or predicted from theory. From a set of 1845 materials, 15 materials pass all screening criteria for single junction cell applications, 13 of which are not previously investigated, such as (CH3NH3)0.75Cs0.25SnI3, ((NH2)2CH)Ag0.5Sb0.5Br3, CsMn0.875Fe0.125I3, ((CH3)2NH2)Ag0.5Bi0.5I3, and ((NH2)2CH)0.5Rb0.5SnI3. These materials, together with others predicted in this study, may be promising candidate materials for stable, highly efficient, and nontoxic perovskite‐based solar cells. 
    more » « less
  2. Abstract To evaluate the role of planar defects in lead‐halide perovskites—cheap, versatile semiconducting materials—it is critical to examine their structure, including defects, at the atomic scale and develop a detailed understanding of their impact on electronic properties. In this study, postsynthesis nanocrystal fusion, aberration‐corrected scanning transmission electron microscopy, and first‐principles calculations are combined to study the nature of different planar defects formed in CsPbBr3nanocrystals. Two types of prevalent planar defects from atomic resolution imaging are observed: previously unreported Br‐rich [001](210)∑5 grain boundaries (GBs) and Ruddlesden–Popper (RP) planar faults. The first‐principles calculations reveal that neither of these planar faults induce deep defect levels, but their Br‐deficient counterparts do. It is found that the ∑5 GB repels electrons and attracts holes, similar to an n–p–n junction, and the RP planar defects repel both electrons and holes, similar to a semiconductor–insulator–semiconductor junction. Finally, the potential applications of these findings and their implications to understand the planar defects in organic–inorganic lead‐halide perovskites that have led to solar cells with extremely high photoconversion efficiencies are discussed. 
    more » « less